
Format Preserving Encryption

Terence Spies

Voltage Security, Inc.

(terence@voltage.com)

ABSTRACT
Encrypting Personally Identifiable Information (PII) in large

databases has historically been difficult, because encrypting

information typically implies expanding data and changing its

format. Previous attempts to encrypt PII data like credit card

numbers and Social Security Numbers without changing their

format have used questionable cryptographic constructions. We

examine the security model for this problem, extend a

construction by Black and Rogaway, and propose practical

constructions for encrypting credit card numbers and Social

Security Numbers.

1. INTRODUCTION

Increased regulation, such as California SB1386 and the PCI Data

Security Standard [9], and consumer awareness of privacy issues

have motivated many businesses to investigate methods to encrypt

Personally Identifiable Information (PII) and minimize the

repercussions of losing data. One of the barriers to the adoption

of effective encryption methods is the cost of modifying databases

and applications to accommodate encrypted information. These

costs are associated with two changes needed to accommodate

classically encrypted data First, privacy-critical information like

credit card numbers or Social Security Numbers are often used as

keys or indices in databases, so randomization of these fields by

encrypting data may require significant schema changes. Second,

applications may be written expecting data in a specific format;

encryption will typically expand data and require a format change.

In addition to encryption of production databases, it may be

desirable to produce test databases that resemble production

databases. Often, the development and deployment process for

large business applications involves testing an application against

a production database before deploying it “live.” However,

during this testing, PII that might be acceptably protected in a

deployment environment now needs to be moved out into a

probably less protected test environment. Encrypting the data

would protect the data, but destroy the ability to test against that

data, since the format would be changed, and, if the encryption

was randomized, destroy referential integrity in the database.

It would be desirable to have an acceptably secure encryption

process that would render a database of identifying information

useless to an attacker without a key, but that would produce

ciphertext in the same format as the plaintext. Certain

compromises from the traditional semantic security model for

ciphers must be taken, because of the desired size of the

ciphertext, and the fact that we might want to encrypt

deterministically to preserve referential integrity in a database.

However, we still want formal statements of the security of these

methods. We term algorithms with this property Format

Preserving Encryption (FPE) algorithms.

Historically, the best test for a cryptographic algorithm is the test

of time. For this reason, we would like to have an FPE algorithm

that is not new, or at least can be reduced (within some bound) to

some existing, known cipher. The algorithms proposed in this

paper have security proofs in the cryptographic literature, and are

based on constructions that go back at least to 1986.

This paper discusses the history of the FPE problem, various

solutions that have been proposed, the security model for FPE in

general, and describes three methods that cover various FPE sub-

cases.

We expand the range of encryptable plaintexts from the Black-

Rogaway paper, examine the limits of these ciphers in the light of

contributions from Patarin, and present practical constructions for

encryption of two important data types, Social Security Numbers

and credit card numbers. We also present performance figures for

implementations of these ciphers.

2. HISTORY

The FPE problem goes back at least to 1997, when Smith and

Brightwell [5] argued that an FPE algorithm would help secure

databases and data warehouses:

Ciphertext (data in encrypted form) bears roughly the

same resemblance to plaintext (data in its original

form) as a hamburger does to a T-bone steak. A social

security number, encrypted using the DES encryption

algorithm, not only does not resemble a social security

number but will likely not contain any numbers at all.

A database field which was defined to hold a nine-

character social security number (eleven, if you want to

include the hyphens) would not be able to store the

DES-encrypted version of the data. A Visual Basic

program would not read it. A graphical interface would

not display it. There would be nothing that you could

do with the encrypted social security number unless you

had made extensive provisions for changes in data

format throughout your application and physical

database design.

They defined the problem and proposed an encryption method

based on an existing block cipher (DES) in Cipher-Feedback

Mode (CFB), which produces a series of data and key dependent

offsets that can be used to encrypt each character of a formatted

string by adding the offset. This method has the weakness that,

using the same key, initial characters in the string will be

encrypted identically, so, for example, credit card numbers that

share a bank id can be identified. The authors propose a

“rippling” scheme to induce dependencies among the characters

in the string, but no argument for the security of this scheme is

given.

The first strong cryptographic attempt to solve a related problem

was Black and Rogaway in 2002 [1]. In this paper, they attempt

to find solutions to a closely related problem: how to find ciphers

that will encrypt elements of a set of some size m into a set of the

same size. Since all formatted strings fit into a finite set of some

size, solutions to this problem can be used as the core of FPE

algorithms. They propose three methods, which we examine

below. Two of the methods, the Prefix method (which works for

small sets) and the Cycle-Walking Cipher (which works for sets

just smaller than the size of the block cipher) have strong security

bounds.

The third method encrypts a much wider variety of data, using the

Feistel construction first formally examined by Luby and Rackoff.

[6]. The Feistel construction has the desirable property that

ciphers built from it can be proven to reduce to some other cipher

used as a round function, as long as the attacker only has access to

some limited number of ciphertext/plaintext pairs. At the time of

the Black-Rogaway paper, there was no proof of bounds strong

enough to allow this construction to be used to encrypt data in the

range of credit card numbers, which left an important use case

unsolved.

Because the Luby-Rackoff construction is so important to the

development of cryptographic algorithms, there has been a large

body of work following that of Luby and Rackoff which attempts

to give tighter security bounds. The basic Luby-Rackoff security

problem is typically formulated as an attacker attempting to

distinguish an instance of a Luby-Rackoff cipher from a random

permutation, given the assumption that the Luby-Rackoff cipher is

built from a psuedorandom function. This is important, as it is the

weakest attack that can be mounted against a cipher. Any other

attack would distinguish the cipher from a random permutation,

so the strength of the cipher against this attack gives a lower

bound on the security of the algorithm.

In the Luby-Rackoff model, security is measured by the number of

ciphertext/plaintext pairs needed by an attacker of unbounded

computational power to have a reasonable chance of

distinguishing between the cipher and a random permutation. The

bounds shown in these proofs establish a formula for the number

of pairs based on the size of the plaintext and the number of

rounds used.

At the time of the original Luby-Rackoff paper, bounds were only

known for three and four rounds, and the number of pairs was

essentially the square root of half the size of the plaintext space.

While this bound was an important theoretical result, it would

give a security bound of 16 bits for triple-DES (since it was

unknown if extra rounds would improve bounds.) Clearly there

were better bounds to be found.

In the credit card case, this result would give a bound of 10,000

ciphertext/plaintext pairs needed, which is clearly too small for

comfort. This bound was especially worrisome for the Black and

Rogaway construction because running at three rounds, 10,000

ciphertext/plaintext pairs would give an attack that would leak

information about other ciphertexts. In the paper, the authors

speculate that more rounds would give more security, but left the

problem to future work.

In 2004, Patarin [7] showed that if the Luby-Rackoff construction

is run with a sufficient number of rounds (6, 7, or 8, depending on

the security model), the number of ciphertext/plaintext rounds

needed by an attacker with unbounded computational resources to

establish a difference between a Luby-Rackoff cipher and a

random permutation approaches the theoretical maximum, which

is the square root of the size of the entire plaintext. In the credit

card number case, the bound would now be 16 million

ciphertext/plaintext pairs, for a theoretical attack by a

computationally unbounded opponent (i.e., an attacker with

infinite computing resources). Patarin also gives the best known

realistic attack, which is still somewhat theoretic in that it requires

more ciphertext/plaintext pairs than can be produced by a single

key, and also at least 264computational steps.

In the light of the Patarin results, it seems worthwhile to re-

examine the Luby-Rackoff construction for the FPE problem, as it

gives an efficient, AES-based encryption algorithm with a strong

proof of security within acceptable bounds.

3. The FPE Model

The archetypical FPE use case is the encryption of an internal

database so that a limited number of applications and users

(perhaps none) can recover the original values from the FPE

encrypted values. In this setting, any security mechanism (FPE,

traditional encryption, or other access-control mechanism) needs

to be strong with the following limitations:

Constraint 1: The attacker knows the format and type of data in

the database. We should assume that an attacker knows that they

are looking for credit card numbers or social security numbers.

Constraint 2: The plaintext size will be relatively small,

compared to typical cryptographic set sizes. A block cipher like

AES operates on 128 bit blocks. Social security numbers are

approximately 28 bits, and credit card numbers are approximately

58 bits long.

This means that any mechanism (FPE or other) must protect

against attacker access to the encrypt/decrypt function; otherwise,

an attacker can simply start asking for decryptions of arbitrary

data and potentially get a dangerous amount of PII data.

In the case of FPE, two other important limitations are put on the

algorithm:

Constraint 3: Data cannot be expanded. When an FPE

algorithm encrypts an N-digit number, it must output an N-digit

number.

Constraint 4: Data must be encrypted deterministically. Data is

typically being encrypted in a database, and it is highly desirable

to preserve the ability to use a column as a key or index, which

requires that multiple instances of a given data item encrypt to an

identical data item (when using the same key).

Note that Constraint 4 also can be seen as a consequence of

Constraint 3. Since no additional data can be stored in the data

field (otherwise expansion would result), there is no space for

randomness needed for initialization vectors or other randomizers.

Location within the database, or other fields could be used as

randomness, but then the ability to decrypt is conditioned on the

availability of that data. If data is decrypted within an application

external to the database, this data may not be available.

Within these constraints, we need an algorithm that will encrypt

data by permuting strings in a given format to different strings in

the same format, will not leak information to an attacker that has

access to a large number of ciphertexts, and will survive the

exposure of a reasonable number of plaintext/ciphertext pairs.

The algorithms that meet this standard are built to survive only in

the FPE setting, and are not generally recommended for building

into communication applications, or other settings where the

attacker can be assumed to have access to the encrypt/decrypt

function or access to unlimited ciphertext/plaintext pairs.

The compensating factor that makes it possible to construct a

secure cipher within these constraints is that, while the attacker

knows that they are looking for a specific kind of data (a Social

Security Number, for instance), they must find one particular

number that matches the other personal data in the database. This

means that we can essentially permute the set of numbers, and

measure the success of the attacker by how successful they can be

at guessing a specific number given a permuted number and some

other defined data.

The practical security goal here is to turn a currently passive

attack (stealing database data through an application, log file, or

backup tape) into one that requires active subversion of a trusted

encryption/decryption function, and that will keep data safe even

if a substantial number of encryptions and decryptions escape. In

section 4, we examine each FPE method and detail the security

bounds that are shown for each method.

3.1 Test Data Model

The model of encrypting data for testing in a lab or for

development access is slightly different than the full FPE model.

In this case, the encryption process may not need to be arbitrarily

reversible, but instead is used to permute the data, then the key is

thrown away. In this case, any possible encryption/decryption

oracle is destroyed, and the best that an attacker can do, short of

finding a way to recorrelate the data with plaintext by breaking

into internal databases, is to examine the ciphertext.

The FPE methods below are very strong in this model. Currently,

many applications use hash functions truncated to output

formatted data. This preserves the referential integrity

requirement, but creates the possibility of internal collisions

(where two data items encrypt to the same value), possibly leading

to difficult to detect bugs. Since all the FPE algorithms are

permutations, they guarantee that data items will not collide when

encrypted. This is an especially desirable feature for small data

items like Social Security Numbers where the probability of a

collision is non-negligible.

4. FPE Methods

This section details three practical FPE methods, all derived from

the three methods in the Black and Rogaway paper [1]. We give

performance measurements for these methods, and offer a

modification and security bound improvement for the Feistel

construction based on Patarin’s results. The next section details

the practical FPE schemes for the specific credit card number and

Social Security Number cases.

Each of the three methods handles a different input set size, either

for security or performance reasons. The following table

summarizes the practical and secure bounds for each of the

methods, in terms of overall set size and also in terms of the

number of decimal digits of a formatted string. Set sizes and

formats that are not covered by this table may be covered by

application of a compound method specified in section 5. The

values in the table are approximate, and actual bounds are

dependent on the security level required by the specific

application. The table attempts to be conservative in terms of

security model. The description of the individual algorithms

specifies how set size interacts with security and performance.

Method Set Sizes (bits) Decimal Digits

Prefix 1-20 1-6

Cycle-walking 50-63 16-19

Feistel-Cycle 40-240 12-80

4.1 The Prefix method

The Prefix method is very simple, but only works on small

datasets. The method works by essentially “writing down” a

random permutation in memory, and using that permutation to

encrypt data.

4.1.1 Prefix Method Description:

To encrypt data with the Prefix method, we first construct a table

which stores a permutation over the full plaintext set, then simply

look up the ciphertext value using the plaintext. This means that

encryptions and decryptions are very fast. Table set up is more

expensive, but acceptable for small set sizes.

To set up the table, we pick an underlying cipher, typically AES

or 3DES. We then encrypt the values 0...N-1, where N is the size

of the input set. We record the input number and the encrypted

value, then sort by the encrypted value For example, say that we

want to encrypt data in the set of a single digit (0-9). We encrypt

ten values with AES, then sort, creating a table that looks like the

following:

Digit AES encryption of digit, sorted

7 12d76795b5e818b38be9813260ab0c5f

3 203c3c515ae6101c4858fe07ecb78ec0

1 25dabcc8862842c228a2d7ac5058b780

2 416f3563827406dab2ef1246393fed32

6 45bd0fb7d45bd276d499ad4b8cd52e55

9 4c9c6ecbdf1ab60ef0b31d753fa594c6

4 4e20e4d8c4195df66a3cc9fe60f5b98f

0 5c3f46a3cf7a8da378eb95f546a20ab2

8 98bc8588c55900703ef11fa80447e32c

5 d99851ff58a9bf03d717ff6601639795

We can then throw away the encrypted values, leaving a

permutation over the set size. In this example, the encryption of 2

would be 1. Decryption can be performed by simply finding the

index of the encrypted value. For example, a ciphertext of 7

would correspond to the plaintext of 0. We can build these tables

for any size set up to just under the size of the underlying block

cipher. (If the input set was the same size as the block cipher, we

could just directly use the block cipher.)

4.1.2 Prefix Cipher Tweaking

Because rekeying the Prefix Cipher requires rebuilding the table,

it may be desirable in certain circumstances to be able to apply a

“tweak” to the cipher, which will alter the encryption function

without requiring a rekey. The security requirements for tweaks,

and some methods for building tweaked ciphers, are given in [8].

The basic method for applying a tweak T to a cipher E (of size N)

that is shown secure in [8] is to perform the following operation,

which encrypts a plaintext P using a key K.

C = E((E(P, K) + T) mod N, K)

Normally, this construction is seen to be inefficient, because it

requires two invocations of the underlying cipher. In the case of

the Prefix Cipher, the cost of encryption is only a lookup, so the

construction is very fast, requiring only two memory lookups and

an addition operation. We will use this tweaking construction to

construct a Social Security Number encryption operation later.

4.1.3 Prefix Method Security

Black and Rogaway [1] give a straightforward proof that breaking

this construction reduces to breaking the underlying cipher. They

conclude that finding a difference between this kind of Prefix

permutation and a random permutation would require finding a

difference between the underlying cipher and a random

permutation.

4.1.4 Prefix Method Performance

The Prefix method can be thought of as having a very slow key

setup time (building the permutation in memory) and a very fast

encrypt and decrypt time (doing the single lookup in the table.)

The performance question comes down to the time required to

build the table, and the memory required to hold the table.

One useful optimization is to initially encrypt the set elements, but

only record the initial 32 bits in the table. The table sort can then

be done on these 32 bit elements, and if two elements are

equivalent, re-encrypt and compare the entire encrypted value.

This optimization makes the intermediate table smaller, and

lowers the amount of copying required during the sort.

The following table shows the performance of the prefix cipher,

using AES-256 as the base cipher, at various set sizes on a 2.34

Ghz Pentium IV with 1 GB memory running Microsoft Windows

XP Professional. Since encryption and decryption is trivial

(requires a single memory lookup), we only show the time

required to build the key table.

The table shows the size of the plaintext in bits, the number of

decimal digits that can be encoded by the cipher, and the time to

build the table in milliseconds.

Bits Decimal Digits Table Build Time

10 3 0.476

14 4 5.5

17 5 62

20 6 760

4.2 Cycle-walking Method

The Cycle-walking construction, like the Prefix method, is quite

simple, but works on a limited class of sets. The Cycle-walking

construction works by encrypting the plaintext with an existing

block cipher (AES or 3DES) repeatedly until the cipher output

falls in the acceptable output range. To encrypt a ciphertext C in

the range 0..N, using some base cipher E, we perform the

following operation:

T = E(C)

while(T > N) T = E(T)

The larger the difference is between the size of the output of the

base cipher and the size of the desired output set, the longer this

operation will take to terminate. For this construction to be

practical, N needs to be some small number of bits shorter than

the output of the cipher.

4.2.1 Cycle-walking Method Security

[1] contains the proof that the Cycle-walking cipher does not

degrade the security of the underlying cipher. It also contains the

proof that the method will terminate in all cases, though it is

possible that there are rare cases where a large number of cycles

will be required.

4.2.2 Cycle-walking Method Performance

The following table shows Cycle-Walking performance using

3DES for a variety of set sizes close to 64 bits. The timings were

taken on a 2.34 Ghz Pentium IV with 1GB memory running

Windows XP Professional. The table shows the bit size of the

input, the number of encoded decimal digits, and the number of

encryption operations per second. The timings were taken by

generating a random decimal value in the range shown, packing it

into binary form, and encrypting using 3DES in the Cycle-

walking mode.

Bits Digits Enc/Second

54 16 500

57 17 5000

60 18 43000

64 19 150000

As can be seen from the table, the Cycle-walking method yields a

usable cipher for values in the size range of standard credit card

numbers, which range from 16-19 digits long.

4.3 Feistel + Cycle Method

This method is more complex than the Prefix or Cycle-walking

constructions, but allows for encryption over a wide variety of set

sizes with good performance. We adapt the Black-Rogaway

construction to use a standard “textbook” Feistel network, which

lets us get close to desired set size, and use the Cycle-walking

technique to get the output into the output set. Black and

Rogaway use a more modified Feistel at three rounds. We use the

unmodified Luby-Rackoff Feistel construction with two different

round function constructions with a minimum of eight rounds.

4.3.1 Feistel + Cycle Description:

The Feistel + Cycle construction has two main parts. First, the

Feistel network that is closest to the size of the plaintext is

constructed. This is then used to encrypt the data. The cycle-

walking technique is then used to insure that the ciphertext is in

the appropriate range. Because the underlying cipher is built to

be very close to the desired size of the ciphertext (within less than

2 bits) so very few cycles are required to get the ciphertext into

the required size.

The Feistel construction for a given bit length n consists of

multiple rounds of the following construction using some Psuedo-

Random Function (PRF) f, which takes n/2 bits and outputs n/2

bits. It operates on the plaintext, which is divided into a left and

right half, called L and R. The round function produces a new L

and R, which is either output or fed back into the next round. The

round function performs the following operation to calculate the

new L and R values:

R’ = L XOR f(R)

L’ = R

To construct a Feistel-Cycle cipher FCN, F, x to encrypt a value P

from 0...N, using a base psuedo-random function F and x rounds,

we do the following:

Define the Feistel network:

1. Find the smallest W s.t. 22W > log2(N). This is the

width of the Feistel network we will use.

2. Define F'(x) = trunc(F(x), w)

3. Round(R, L) = L XOR F'(R)

4. FeistelN, F, x(P) is then computed by:

1. Find R, L s.t. P = R * 2W + L

2. Repeat x times: { T = Round(R, L), L = R, R = T }

3. Output R * 2W + L

FCN, F, x(P) is then computed as:

1. C = FeistelN, F, x(P)

2. while(C > N) { C = FeistelN, F, x(C) }

To fully specify a Feistel-Cycle cipher for a specific instance, we

now need to just decide two things. First, how many rounds to

run. The security bounds that we need are comfortably achieved

with 8 rounds for most datasets. Second, what do we use for F?

The security bounds reduce the problem of distinguishing the

whole cipher from a random permutation to distinguishing F from

a random function. Hence, we need a strong random function of

n/2 bits for a wide variety of n.

The problem of building PRFs has been widely studied, and there

are two methods that give acceptable PRFs for use here. We can’t

simply use AES, since it is a pseudo-random permutation (PRP),

not a PRF, and it is too wide. We need a random function that is

exactly the same width as the left element so that L can be

XOR’ed with the output. If n is small enough, simply taking the

first n/2 bits of AES actually gives a strong PRF. If n is larger, we

can take the output of two instances of AES XORed together. [2]

details the proof that these constructions yield strong PRFs.

There is a long tradition of using truncated PRPs as strong PRFs.

For example, the IETF RFC on a PRF for Kerberos [10] uses this

construction.

4.3.2 Feistel + Cycle Security

We can measure security of this cipher in three different ways.

First is the resistance to attack by the best possible

computationally unbounded attacker. Second is the resistance to

attack by brute force. Third is the best known attack that

distinguishes Feistel networks from random permutations.

Attacker 1: The Optimal Unbounded Attacker

For any Feistel network, we can measure the amount of entropy in

the function, estimate how much entropy a plaintext/ciphertext

pair gives away, and then derive how many plaintext/ciphertext

pairs are required for any possible attacker. This is the strongest

possible security model. The result of this analysis [5] is that the

best possible unbounded attacker will require sqrt(2n)

ciphertext/plaintext pairs, and Patarin [7] shows that 6 rounds of a

Feistel network is sufficient to get to this upper bound. This

means that any theoretic adversary attacking a 6 or more round

Feistel network operating on 56 bits, which is the set required for

credit card numbers, will require a minimum of 16 million

plaintext/ciphertext pairs. The same cipher operating over the

Social Security Number space, which is about 28 bits, will require

a minimum of 16,384 pairs. Since this number is small, we

consider hybrid techniques in the next section to handle this case.

Note that for Feistel networks of over 6 rounds, these bounds are

for a hypothesized optimal attacker, and no practical attack comes

close to these bounds.

The unbounded attack model is most interesting in that it provides

a strong lower bound. We know, through the proof, that no attack

can be constructed that is more efficient. The currently known

attacks against Feistel networks are far worse than these bounds.

Attacker 2: The Brute Force Attacker

The closest match to the unbounded attacker is an attacker that

attempts to enumerate all possible round functions that are

consistent with the plaintext/ciphertext pairs it has seen. This

attacker would require 2log2(r)+sqrt(n) pairs, and would need to

perform a very large number of computations. We can see the

difficulty of the attack by examining the computations required to

attack a small six bit wide Feistel network using eight rounds.

A six bit wide Feistel network will use three bit PRFs. There are

88 or 224 possible functions of this type. With eight rounds, the

brute force attacker will need to keep track of 2192 possible Feistel

networks, and eliminate them as they become inconsistent with

the ciphertext/plaintext pairs. It is possible that there is some

optimization that would make this attack practical, but it appears

that even a trivially small Feistel requires an currently impractical

amount of computational power.

Attacker 3: The Best Known Attacker

Patarin showed the best known realizable attack against Feistel

networks [7]. These attacks are realizable in principle, but require

more ciphertext/plaintext pairs than can be produced by a single

key, and require significant computational resources. The Patarin

attacks are also pure distinguishing attacks that produce a single

bit, which is the guess as to if the plaintext/ciphertext pairs are

produced by a random permutation or by a Feistel network.

To distinguish an 2n bit wide Feistel network of 8 or more rounds

from a random permutation, the Patarin attacks require 2(r-6)n

plaintext/ciphertext pairs, and 2(r-4)n computations. So, for the

credit card case with 8 rounds, it would require 256

plaintext/ciphertext pairs, and 2112 computational steps. This

means the attacker would need every single possible

plaintext/ciphertext pair, and would need to perform more

computations than would be needed to break an 80 bit key.

Increasing the round count beyond 8 makes these attacks even

more difficult.

4.3.3 Feistel + Cycle Performance

The Feistel + Cycle construction’s performance is dependent upon

the number of rounds used and the specific PRF that is used in the

round function. For any plaintext that is smaller than the block

size of the PRF, the performance is essentially i*r*cost(PRF),

where r is the round count and i is the average number of times

the cipher cycles to get an acceptable output. For the truncated

AES PRF, performance is very close to i*r*cost(AES) + cost(AES

key setup). For the summing AES PRF, performance is close to

2*i*r*cost(AES) + 2*cost(AES key setup).

Measurement of the Feistel+Cycle method was done on a 2.34

Ghz Pentium IV with 1GB of memory running Windows XP

Professional, using AES as the base for the internal PRF. The

cipher was measured for a range of round counts ranging from 8

to 128, using both the truncation and additive PRF constructions.

Rounds PRF Enc/Second

128 Trunc 7000

32 Trunc 10500

8 Trunc 18000

8 Add 8100

The range of rounds was measured to examine the viability of

running large numbers of rounds to defeat any possibility of the

worst-case brute force attack working for small inputs.

5. Specific and Compound Methods

It is possible to use these methods in combination to yield FPE

techniques that will allow for granting access to only selected

digits of a number (for example, limiting a customer service

application to the last four digits of a Social Security Number,

while granting another application full access.) These methods

can be used to fill the gap between where the Prefix method is not

practical and where the Feistel + Cycle construction may not be

considered fully secure.

5.1 Compound for Social Security

Numbers

The Social Security Number case is interesting because this is a

common type of PII, and it is small enough that it does not fall

into the obvious bounds for the known three provable FPE

methods. This case is valuable enough that we supply a method

that gives reasonable security bounds for the entire number, and

also gives the valuable property of being able to either decrypt the

entire number or just the last four digits, which are often used in

customer service applications for confirmation purposes.

The construction works in the following way. We use as the basis

for the construction two ciphers:

Pre5(P, T, K) : A Prefix cipher encrypting all five digit

decimal values using key K, and an arbitrary tweak value T

FC9(P, K) : A Feistel-cycle cipher encrypting all nine digit

decimal values using key K.

H(P) : A hash function from four digit decimal values to an

arbitrary bit string.

Construct two keys, K1 and K2. Divide the Social Security

Number into the initial five digits L and the last four digits R.

The encrypted number is then computed by:

E = FC9(Pre5(L, H(R), K1), K2)

Now an entity can be given access to just the last four digits by

giving them just K2. They can use K2 to undo the Feistel

encryption only. An entity with access to K1 and K2 can decrypt

the entire number by first undoing the Feistel encryption with K2,

then undoing the Prefix encryption with K1 and the decrypted last

four digits.

The initial encryption with the Prefix Cipher insures that a

theoretical attacker that uses the smaller bounds of the Feistel

cipher run on a small plaintext space will only recover (in the

worst case) the last four digits of the number and encrypted

versions of the first five digits.

5.2 Methods for Credit Card Numbers

Credit card numbers are an interesting case for FPE, as they carry

a check digit at the end of the number that is calculated with the

Luhn algorithm, which is a modified sum of the digits. This digit

does not need to be encrypted, since it can simply be recalculated

when the remaining digits are decrypted.

There are three methods to encrypt with this checksum:

Method 1 – Transparent Encryption

The goal here is to encrypt a credit card number so that an

encrypted number is indistinguishable from a plaintext number. It

maintains a valid checksum. This is useful because untrusted

applications that require a valid checksum will continue to

function unmodified. The risk here is that applications, since they

cannot distinguish, may accidentally use an encrypted number as a

plaintext number.

To do this, encrypt all the digits except the last using an FPE

algorithm. After encryption, add a checksum digit with a valid

checksum of the encrypted digits. This has the advantage that, to

any application that tests the checksum, encrypted CCNs look

identical to valid CCNs. To decrypt, FPE decrypt all the digits

except for the last, then regenerate the checksum digits on the

plaintext digits.

Method 2 – Checksum marking

In some situations, it is valuable to encrypt so that the format is

preserved, but that there is some indication that a number is

encrypted. By inducing a systematic offset in the checksum, a

program can reliably tell that a number is encrypted, even though

the format remains the same.

Encrypt the number but exclude the final digit, and replace the

checksum digit with the checksum value plus 1. This insures that

the checksum digit is invalid, and gives a reliable method to

distinguish an encrypted CCN from a plaintext CCN.

Method 3 – Checksum encoding

The constant checksum offset can also be used to encode a small

amount of extra information in the checksum digit. This can be

used to select from a set of keys, adding diversity to an existing

key management scheme.

Generate nine keys, encrypt all the digits (but the final) with one

of these keys, and replace the checksum digits with the checksum

plus a key identifying value from 1 to 9. This insures that the

checksum is invalid, and gives a method to change keys and

record what key is used to encrypt a specific value without adding

any data to the database. This gives an additional key selection

value, but must be supplemented with other sources to identify the

key, more than 9 keys will be used.

6. REFERENCES

[1] J. Black and P. Rogaway. Ciphers with Arbitrary Finite

Domains. RSA Data Security Conference, Cryptographer's

Track (RSA CT '02), Lecture Notes in Computer Science,

vol. 2271, pp. 114-130, Springer, 2002.

[2] M. Bellare and R. Impagliazzo. A tool for obtaining tighter

security analyses of pseudorandom function based

constructions, with applications to PRP / PRF conversion.

Manuscript, 1999.

[3] S. Lucks. The Sum of PRPs Is a Secure PRF. Lecture Notes

in Computer Science", volume 1807, 2000

[4] H. E. Smith and M. Brightwell. Using Datatype-Preserving

Encryption to Enhance Data Warehouse Security. NIST 20th

National Information Systems Security Conference, pp.141,

1997.

[5] 5. M. Naor and O. Reingold, On the construction of pseudo-

random permutations: Luby-Rackoff revisited, J. of

Cryptology, vol 12, 1999, pp. 29-66. Extended abstract in:

Proc. 29th Ann. ACM Symp. on Theory of Computing,

1997, pp. 189-199

[6] M. Luby and C. Rackoff. How to construct pseudorandom

permutations and pseudorandom functions. SIAM J.

Computing, 17(2):373–386, April 1988.

[7] J. Patarin. Security of Random Feistel Schemes With 5 or

More Rounds. In proceedings of Crypto 2004, The 24th

Annual International Cryptology Conference, Santa Barbara,

California, USA, August 15-19, 2004.

[8] M. Liskov, R. Rivest, D. Wagner. Tweakable Block Ciphers.

Proceedings of Crypto 2002, The 22nd Annual International

Cryptology Conference, Santa Barbara, CA, Aug 15-19,

2002.

[9] PCI Security Standards Council, Payment Card Industry

(PCI) Data Security Standard,

https://www.pcisecuritystandards.org/tech/index.htm,

September 2006

[10] N. Williams, Internet Engineering Task Force RFC 4402

(http://www.rfc-archive.org/getrfc.php?rfc=4402)

https://www.pcisecuritystandards.org/tech/index.htm
http://www.rfc-archive.org/getrfc.php?rfc=4402

