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ABSTRACT 
Encrypting Personally Identifiable Information (PII) in large 

databases has historically been difficult, because encrypting 

information typically implies expanding data and changing its 

format.  Previous attempts to encrypt PII data like credit card 

numbers and Social Security Numbers without changing their 

format have used questionable cryptographic constructions.  We 

examine the security model for this problem, extend a 

construction by Black and Rogaway, and propose practical 

constructions for encrypting credit card numbers and Social 

Security Numbers.   

1. INTRODUCTION 

 
Increased regulation, such as California SB1386 and the PCI Data 

Security Standard [9], and consumer awareness of privacy issues 

have motivated many businesses to investigate methods to encrypt 

Personally Identifiable Information (PII) and minimize the 

repercussions of losing data.  One of the barriers to the adoption 

of effective encryption methods is the cost of modifying databases 

and applications to accommodate encrypted information.  These 

costs are associated with two changes needed to accommodate 

classically encrypted data  First, privacy-critical information like 

credit card numbers or Social Security Numbers are often used as 

keys or indices in databases, so randomization of these fields by  

encrypting data may require significant schema changes.  Second, 

applications may be written expecting data in a specific format; 

encryption will typically expand data and require a format change. 

In addition to encryption of production databases, it may be 

desirable to produce test databases that resemble production 

databases.  Often, the development and deployment process for 

large business applications involves testing an application against 

a production database before deploying it “live.”  However, 

during this testing, PII that might be acceptably protected in a 

deployment environment now needs to be moved out into a 

probably less protected test environment.  Encrypting the data 

would protect the data, but destroy the ability to test against that 

data, since the format would be changed, and, if the encryption 

was randomized, destroy referential integrity in the database. 

It would be desirable to have an acceptably secure encryption 

process that would render a database of identifying information 

useless to an attacker without a key, but that would produce 

ciphertext in the same format as the plaintext.  Certain 

compromises from the traditional semantic security model for 

ciphers must be taken, because of the desired size of the 

ciphertext, and the fact that we might want to encrypt 

deterministically to preserve referential integrity in a database.  

However, we still want formal statements of the security of these 

methods.  We term algorithms with this property Format 

Preserving Encryption (FPE) algorithms. 

Historically, the best test for a cryptographic algorithm is the test 

of time.  For this reason, we would like to have an FPE algorithm 

that is not new, or at least can be reduced (within some bound) to 

some existing, known cipher.  The algorithms proposed in this 

paper have security proofs in the cryptographic literature, and are 

based on constructions that go back at least to 1986.  

This paper discusses the history of the FPE problem, various 

solutions that have been proposed, the security model for FPE in 

general, and describes three methods that cover various FPE sub-

cases. 

We expand the range of encryptable plaintexts from the Black-

Rogaway paper, examine the limits of these ciphers in the light of 

contributions from Patarin, and present practical constructions for 

encryption of two important data types, Social Security Numbers 

and credit card numbers.  We also present performance figures for 

implementations of these ciphers. 

 

2. HISTORY 
 

The FPE problem goes back at least to 1997, when Smith and 

Brightwell [5] argued that an FPE algorithm would help secure 

databases and data warehouses: 

Ciphertext (data in encrypted form) bears roughly the 

same resemblance to plaintext (data in its original 

form) as a hamburger does to a T-bone steak.  A social 

security number, encrypted using the DES encryption 

algorithm, not only does not resemble a social security 

number but will likely not contain any numbers at all.  

A database field which was defined to hold a nine-

character social security number (eleven, if you want to 

include the hyphens) would not be able to store the 

DES-encrypted version of the data.  A Visual Basic 

program would not read it. A graphical interface would 

not display it.  There would be nothing that you could 

do with the encrypted social security number unless you 

had made extensive provisions for changes in data 



format throughout your application and physical 

database design.  

They defined the problem and proposed an encryption method 

based on an existing block cipher (DES) in Cipher-Feedback 

Mode (CFB), which produces a series of data and key dependent 

offsets that can be used to encrypt each character of a formatted 

string by adding the offset.  This method has the weakness that, 

using the same key, initial characters in the string will be 

encrypted identically, so, for example, credit card numbers that 

share a bank id can be identified.  The authors propose a 

“rippling” scheme to induce dependencies among the characters 

in the string, but no argument for the security of this scheme is 

given. 

The first strong cryptographic attempt to solve a related problem 

was Black and Rogaway in 2002 [1].  In this paper, they attempt 

to find solutions to a closely related problem:  how to find ciphers 

that will encrypt elements of a set of some size m into a set of the 

same size.  Since all formatted strings fit into a finite set of some 

size, solutions to this problem can be used as the core of FPE 

algorithms.   They propose three methods, which we examine 

below.  Two of the methods, the Prefix method (which works for 

small sets) and the Cycle-Walking Cipher (which works for sets 

just smaller than the size of the block cipher) have strong security 

bounds.   

The third method encrypts a much wider variety of data, using the 

Feistel construction first formally examined by Luby and Rackoff. 

[6].  The Feistel construction has the desirable property that 

ciphers built from it can be proven to reduce to some other cipher 

used as a round function, as long as the attacker only has access to 

some limited number of ciphertext/plaintext pairs.  At the time of 

the Black-Rogaway paper, there was no proof of bounds strong 

enough to allow this construction to be used to encrypt data in the 

range of credit card numbers, which left an important use case 

unsolved. 

Because the Luby-Rackoff construction is so important to the 

development of cryptographic algorithms, there has been a large 

body of work following that of Luby and Rackoff which attempts 

to give tighter security bounds.  The basic Luby-Rackoff security 

problem is typically formulated as an attacker attempting to 

distinguish an instance of a Luby-Rackoff cipher from a random 

permutation, given the assumption that the Luby-Rackoff cipher is 

built from a psuedorandom function.  This is important, as it is the 

weakest attack that can be mounted against a cipher.  Any other 

attack would distinguish the cipher from a random permutation, 

so the strength of the cipher against this attack gives a lower 

bound on the security of the algorithm.   

In the Luby-Rackoff model, security is measured by the number of 

ciphertext/plaintext pairs needed by an attacker of unbounded 

computational power to have a reasonable chance of 

distinguishing between the cipher and a random permutation.  The 

bounds shown in these proofs establish a formula for the number 

of pairs based on the size of the plaintext and the number of 

rounds used.   

At the time of the original Luby-Rackoff paper, bounds were only 

known for three and four rounds, and the number of pairs was 

essentially the square root of half the size of the plaintext space.  

While this bound was an important theoretical result, it would 

give a security bound of 16 bits for triple-DES (since it was 

unknown if extra rounds would improve bounds.)  Clearly there 

were better bounds to be found. 

In the credit card case, this result would give a bound of 10,000 

ciphertext/plaintext pairs needed, which is clearly too small for 

comfort.  This bound was especially worrisome for the Black and 

Rogaway construction because running at three rounds, 10,000 

ciphertext/plaintext pairs would give an attack that would leak 

information about other ciphertexts.  In the paper, the authors 

speculate that more rounds would give more security, but left the 

problem to future work.   

In 2004, Patarin [7] showed that if the Luby-Rackoff construction 

is run with a sufficient number of rounds (6, 7, or 8, depending on 

the security model), the number of ciphertext/plaintext rounds 

needed by an attacker with unbounded computational resources to 

establish a difference between a Luby-Rackoff cipher and a 

random permutation approaches the theoretical maximum, which 

is the square root of the size of the entire plaintext.  In the credit 

card number case, the bound would now be 16 million 

ciphertext/plaintext pairs, for a theoretical attack by a 

computationally unbounded opponent (i.e., an attacker with 

infinite computing resources).  Patarin also gives the best known 

realistic attack, which is still somewhat theoretic in that it requires 

more ciphertext/plaintext pairs than can be produced by a single 

key, and also at least 264computational steps. 

In the light of the Patarin results, it seems worthwhile to re-

examine the Luby-Rackoff construction for the FPE problem, as it 

gives an efficient, AES-based encryption algorithm with a strong 

proof of security within acceptable bounds. 

 

3.  The FPE Model 
 

The archetypical FPE use case is the encryption of an internal 

database so that a limited number of applications and users 

(perhaps none) can recover the original values from the FPE 

encrypted values.  In this setting, any security mechanism (FPE, 

traditional encryption, or other access-control mechanism) needs 

to be strong with the following limitations: 

 

Constraint 1:   The attacker knows the format and type of data in 

the database.  We should assume that an attacker knows that they 

are looking for credit card numbers or social security numbers. 

Constraint 2:  The plaintext size will be relatively small, 

compared to typical cryptographic set sizes.  A block cipher like 

AES operates on 128 bit blocks.  Social security numbers are 

approximately 28 bits, and credit card numbers are approximately 

58 bits long. 

 

This means that any mechanism (FPE or other) must protect 

against attacker access to the encrypt/decrypt function; otherwise, 

an attacker can simply start asking for decryptions of arbitrary 

data and potentially get a dangerous amount of PII data. 

In the case of FPE, two other important limitations are put on the 

algorithm: 

 



Constraint 3:  Data cannot be expanded.  When an FPE 

algorithm encrypts an N-digit number, it must output an N-digit 

number. 

Constraint 4:  Data must be encrypted deterministically.  Data is 

typically being encrypted in a database, and it is highly desirable 

to preserve the ability to use a column as a key or index, which 

requires that multiple instances of a given data item encrypt to an 

identical data item (when using the same key). 

Note that Constraint 4 also can be seen as a consequence of 

Constraint 3.  Since no additional data can be stored in the data 

field (otherwise expansion would result), there is no space for 

randomness needed for initialization vectors or other randomizers.  

Location within the database, or other fields could be used as 

randomness, but then the ability to decrypt is conditioned on the 

availability of that data.  If data is decrypted within an application 

external to the database, this data may not be available. 

Within these constraints, we need an algorithm that will encrypt 

data by permuting strings in a given format to different strings in 

the same format, will not leak information to an attacker that has 

access to a large number of ciphertexts, and will survive the 

exposure of a reasonable number of plaintext/ciphertext pairs.  

The algorithms that meet this standard are built to survive only in 

the FPE setting, and are not generally recommended for building 

into communication applications, or other settings where the 

attacker can be assumed to have access to the encrypt/decrypt 

function or access to unlimited ciphertext/plaintext pairs. 

The compensating factor that makes it possible to construct a 

secure cipher within these constraints is that, while the attacker 

knows that they are looking for a specific kind of data (a Social 

Security Number, for instance), they must find one particular 

number that matches the other personal data in the database.  This 

means that we can essentially permute the set of numbers, and 

measure the success of the attacker by how successful they can be 

at guessing a specific number given a permuted number and some 

other defined data. 

The practical security goal here is to turn a currently passive 

attack (stealing database data through an application, log file, or 

backup tape) into one that requires active subversion of a trusted 

encryption/decryption function, and that will keep data safe even 

if a substantial number of encryptions and decryptions escape.  In 

section 4, we examine each FPE method and detail the security 

bounds that are shown for each method. 

3.1  Test Data Model 
 

The model of encrypting data for testing in a lab or for 

development access is slightly different than the full FPE model.  

In this case, the encryption process may not need to be arbitrarily 

reversible, but instead is used to permute the data, then the key is 

thrown away.  In this case, any possible encryption/decryption 

oracle is destroyed, and the best that an attacker can do, short of 

finding a way to recorrelate the data with plaintext by breaking 

into internal databases, is to examine the ciphertext. 

The FPE methods below are very strong in this model.  Currently, 

many applications use hash functions truncated to output 

formatted data.  This preserves the referential integrity 

requirement, but creates the possibility of internal collisions 

(where two data items encrypt to the same value), possibly leading 

to difficult to detect bugs.  Since all the FPE algorithms are 

permutations, they guarantee that data items will not collide when 

encrypted.  This is an especially desirable feature for small data 

items like Social Security Numbers where the probability of a 

collision is non-negligible. 

 

4.  FPE Methods 
 

This section details three practical FPE methods, all derived from 

the three methods in the Black and Rogaway paper [1].  We give 

performance measurements for these methods, and offer a 

modification and security bound improvement for the Feistel 

construction based on Patarin’s results.  The next section details 

the practical FPE schemes for the specific credit card number and 

Social Security Number cases.   

Each of the three methods handles a different input set size, either 

for security or performance reasons.  The following table 

summarizes the practical and secure bounds for each of the 

methods, in terms of overall set size and also in terms of the 

number of decimal digits of a formatted string.  Set sizes and 

formats that are not covered by this table may be covered by 

application of a compound method specified in section 5.  The 

values in the table are approximate, and actual bounds are 

dependent on the security level required by the specific 

application.  The table attempts to be conservative in terms of 

security model.  The description of the individual algorithms 

specifies how set size interacts with security and performance. 

 

Method Set Sizes (bits) Decimal Digits 

Prefix 1-20 1-6 

Cycle-walking 50-63 16-19 

Feistel-Cycle 40-240 12-80 

 

4.1  The Prefix method 
 

The Prefix method is very simple, but only works on small 

datasets.  The method works by essentially “writing down” a 

random permutation in memory, and using that permutation to 

encrypt data. 

 

4.1.1  Prefix Method Description: 
 

To encrypt data with the Prefix method, we first construct a table 

which stores a permutation over the full plaintext set, then simply 

look up the ciphertext value using the plaintext.  This means that 

encryptions and decryptions are very fast.  Table set up is more 

expensive, but acceptable for small set sizes. 

To set up the table, we pick an underlying cipher, typically AES 

or 3DES.  We then encrypt the values 0...N-1, where N is the size 

of the input set.  We record the input number and the encrypted 

value, then sort by the encrypted value  For example, say that we 

want to encrypt data in the set of a single digit (0-9).  We encrypt 



ten values with AES, then sort, creating a table that looks like the 

following: 

 

Digit AES encryption of digit, sorted 

7 12d76795b5e818b38be9813260ab0c5f 

3 203c3c515ae6101c4858fe07ecb78ec0 

1 25dabcc8862842c228a2d7ac5058b780 

2 416f3563827406dab2ef1246393fed32 

6 45bd0fb7d45bd276d499ad4b8cd52e55 

9 4c9c6ecbdf1ab60ef0b31d753fa594c6 

4 4e20e4d8c4195df66a3cc9fe60f5b98f 

0 5c3f46a3cf7a8da378eb95f546a20ab2 

8 98bc8588c55900703ef11fa80447e32c 

5 d99851ff58a9bf03d717ff6601639795 

 

We can then throw away the encrypted values, leaving a 

permutation over the set size.  In this example, the encryption of 2 

would be 1.  Decryption can be performed by simply finding the 

index of the encrypted value.  For example, a ciphertext of 7 

would correspond to the plaintext of 0.  We can build these tables 

for any size set up to just under the size of the underlying block 

cipher.  (If the input set was the same size as the block cipher, we 

could just directly use the block cipher.) 

 

4.1.2   Prefix Cipher Tweaking 
 

Because rekeying the Prefix Cipher requires rebuilding the table, 

it may be desirable in certain circumstances to be able to apply a 

“tweak” to the cipher, which will alter the encryption function 

without requiring a rekey.  The security requirements for tweaks, 

and some methods for building tweaked ciphers, are given in [8].   

The basic method for applying a tweak T to a cipher E (of size N) 

that is shown secure in [8] is to perform the following operation, 

which encrypts a plaintext P using a key K. 

 

C = E((E(P, K) + T) mod N, K) 

 

Normally, this construction is seen to be inefficient, because it 

requires two invocations of the underlying cipher.  In the case of 

the Prefix Cipher, the cost of encryption is only a lookup, so the 

construction is very fast, requiring only two memory lookups and 

an addition operation.  We will use this tweaking construction to 

construct a Social Security Number encryption operation later. 

4.1.3   Prefix Method Security 
 

Black and Rogaway [1] give a straightforward proof that breaking 

this construction reduces to breaking the underlying cipher.  They 

conclude that finding a difference between this kind of Prefix 

permutation and a random permutation would require finding a 

difference between the underlying cipher and a random 

permutation. 

 

4.1.4   Prefix Method Performance 
 

The Prefix method can be thought of as having a very slow key 

setup time (building the permutation in memory) and a very fast 

encrypt and decrypt time (doing the single lookup in the table.)  

The performance question comes down to the time required to 

build the table, and the memory required to hold the table.   

One useful optimization is to initially encrypt the set elements, but 

only record the initial 32 bits in the table.  The table sort can then 

be done on these 32 bit elements, and if two elements are 

equivalent, re-encrypt and compare the entire encrypted value.  

This optimization makes the intermediate table smaller, and 

lowers the amount of copying required during the sort. 

The following table shows the performance of the prefix cipher, 

using AES-256 as the base cipher, at various set sizes on a 2.34 

Ghz Pentium IV with 1 GB memory running Microsoft Windows 

XP Professional.  Since encryption and decryption is trivial 

(requires a single memory lookup), we only show the time 

required to build the key table. 

The table shows the size of the plaintext in bits, the number of 

decimal digits that can be encoded by the cipher, and the time to 

build the table in milliseconds. 

Bits Decimal Digits Table Build Time 

10 3 0.476 

14 4 5.5 

17 5 62 

20 6 760 

 

4.2  Cycle-walking Method 
 

The Cycle-walking construction, like the Prefix method, is quite 

simple, but works on a limited class of sets.  The Cycle-walking 

construction works by encrypting the plaintext with an existing 

block cipher (AES or 3DES) repeatedly until the cipher output 

falls in the acceptable output range.  To encrypt a ciphertext C in 

the range 0..N, using some base cipher E, we perform the 

following operation: 

 

T = E(C) 

while(T > N) T = E(T) 

 

The larger the difference is between the size of the output of the 

base cipher and the size of the desired output set, the longer this 

operation will take to terminate.  For this construction to be 

practical, N needs to be some small number of bits shorter than 

the output of the cipher. 

4.2.1  Cycle-walking Method Security 
 



[1] contains the proof that the Cycle-walking cipher does not 

degrade the security of the underlying cipher.  It also contains the 

proof that the method will terminate in all cases, though it is 

possible that there are rare cases where a large number of cycles 

will be required. 

 

4.2.2  Cycle-walking Method Performance 
 

The following table shows Cycle-Walking performance using 

3DES for a variety of set sizes close to 64 bits.  The timings were 

taken on a 2.34 Ghz Pentium IV with 1GB memory running 

Windows XP Professional.  The table shows the bit size of the 

input, the number of encoded decimal digits, and the number of 

encryption operations per second.  The timings were taken by 

generating a random decimal value in the range shown, packing it 

into binary form, and encrypting using 3DES in the Cycle-

walking mode. 

 

Bits Digits Enc/Second 

54 16 500 

57 17 5000 

60 18 43000 

64 19 150000 

 
As can be seen from the table, the Cycle-walking method yields a 

usable cipher for values in the size range of standard credit card 

numbers, which range from 16-19 digits long. 

4.3  Feistel + Cycle Method 
 

This method is more complex than the Prefix or Cycle-walking 

constructions, but allows for encryption over a wide variety of set 

sizes with good performance.  We adapt the Black-Rogaway 

construction to use a standard “textbook” Feistel network, which 

lets us get close to desired set size, and use the Cycle-walking 

technique to get the output into the output set.  Black and 

Rogaway use a more modified Feistel at three rounds.  We use the 

unmodified Luby-Rackoff Feistel construction with two different 

round function constructions with a minimum of eight rounds. 

 

4.3.1  Feistel + Cycle Description: 
 

The Feistel + Cycle construction has two main parts.  First, the 

Feistel network that is closest to the size of the plaintext is 

constructed.  This is then used to encrypt the data.  The cycle-

walking technique is then used to insure that the ciphertext is in 

the appropriate range.  Because the underlying cipher is built to 

be very close to the desired size of the ciphertext (within less than 

2 bits) so very few cycles are required to get the ciphertext into 

the required size. 

The Feistel construction for a given bit length n consists of 

multiple rounds of the following construction using some Psuedo-

Random Function (PRF) f, which takes n/2 bits and outputs n/2 

bits.  It operates on the plaintext, which is divided into a left and 

right half, called L and R.  The round function produces a new L 

and R, which is either output or fed back into the next round.  The 

round function performs the following operation to calculate the 

new L and R values: 

 

R’ = L XOR f(R) 

L’ = R 

 

To construct a Feistel-Cycle cipher FCN, F, x to encrypt a value P 

from 0...N, using a base psuedo-random function F and x rounds, 

we do the following: 

 

Define the Feistel network: 

1. Find the smallest W s.t. 22W > log2(N).  This is the 

width of the Feistel network we will use. 

2. Define F'(x) = trunc(F(x), w) 

3. Round(R, L) = L XOR F'(R) 

4. FeistelN, F, x(P) is then computed by: 

1. Find R, L s.t. P = R * 2W + L 

2. Repeat x times: { T = Round(R, L), L = R, R = T } 

3. Output R * 2W + L 

FCN, F, x(P) is then computed as: 

1. C = FeistelN, F, x(P) 

2. while(C > N) { C = FeistelN, F, x(C) } 

 

To fully specify a Feistel-Cycle cipher for a specific instance, we 

now need to just decide two things.  First, how many rounds to 

run.  The security bounds that we need are comfortably achieved 

with 8 rounds for most datasets.  Second, what do we use for F?  

The security bounds reduce the problem of distinguishing the 

whole cipher from a random permutation to distinguishing F from 

a random function.  Hence, we need a strong random function of 

n/2 bits for a wide variety of n. 

The problem of building PRFs has been widely studied, and there 

are two methods that give acceptable PRFs for use here.  We can’t 

simply use AES, since it is a pseudo-random permutation (PRP), 

not a PRF, and it is too wide.  We need a random function that is 

exactly the same width as the left element so that L can be 

XOR’ed with the output.  If n is small enough, simply taking the 

first n/2 bits of AES actually gives a strong PRF.  If n is larger, we 

can take the output of two instances of AES XORed together. [2] 

details the proof that these constructions yield strong PRFs. 

There is a long tradition of using truncated PRPs as strong PRFs.  

For example, the IETF RFC on a PRF for Kerberos [10] uses this 

construction.   

 

4.3.2   Feistel + Cycle Security 
 



We can measure security of this cipher in three different ways.  

First is the resistance to attack by the best possible 

computationally unbounded attacker.  Second is the resistance to 

attack by brute force.  Third is the best known attack that 

distinguishes Feistel networks from random permutations. 

 

Attacker 1:  The Optimal Unbounded Attacker 

 

For any Feistel network, we can measure the amount of entropy in 

the function, estimate how much entropy a plaintext/ciphertext 

pair gives away, and then derive how many plaintext/ciphertext 

pairs are required for any possible attacker.  This is the strongest 

possible security model.  The result of this analysis [5] is that the 

best possible unbounded attacker will require sqrt(2n) 

ciphertext/plaintext pairs, and Patarin [7] shows that 6 rounds of a 

Feistel network is sufficient to get to this upper bound.  This 

means that any theoretic adversary attacking a 6 or more round 

Feistel network operating on 56 bits, which is the set required for 

credit card numbers, will require a minimum of 16 million 

plaintext/ciphertext pairs.  The same cipher operating over the 

Social Security Number space, which is about 28 bits, will require 

a minimum of 16,384 pairs.  Since this number is small, we 

consider hybrid techniques in the next section to handle this case.  

Note that for Feistel networks of over 6 rounds, these bounds are 

for a hypothesized optimal attacker, and no practical attack comes 

close to these bounds. 

The unbounded attack model is most interesting in that it provides 

a strong lower bound.  We know, through the proof, that no attack 

can be constructed that is more efficient.  The currently known 

attacks against Feistel networks are far worse than these bounds. 

 

Attacker 2:  The Brute Force Attacker 

 

The closest match to the unbounded attacker is an attacker that 

attempts to enumerate all possible round functions that are 

consistent with the plaintext/ciphertext pairs it has seen.  This 

attacker would require 2log2(r)+sqrt(n) pairs, and would need to 

perform a very large number of computations.  We can see the 

difficulty of the attack by examining the computations required to 

attack a small six bit wide Feistel network using eight rounds.   

A six bit wide Feistel network will use three bit PRFs.  There are 

88 or 224 possible functions of this type.  With eight rounds, the 

brute force attacker will need to keep track of 2192 possible Feistel 

networks, and eliminate them as they become inconsistent with 

the ciphertext/plaintext pairs.  It is possible that there is some 

optimization that would make this attack practical, but it appears 

that even a trivially small Feistel requires an currently impractical 

amount of computational power. 

 

Attacker 3:  The Best Known Attacker 

 

Patarin showed the best known realizable attack against Feistel 

networks [7].  These attacks are realizable in principle, but require 

more ciphertext/plaintext pairs than can be produced by a single 

key, and require significant computational resources.  The Patarin 

attacks are also pure distinguishing attacks that produce a single 

bit, which is the guess as to if the plaintext/ciphertext pairs are 

produced by a random permutation or by a Feistel network. 

To distinguish an 2n bit wide Feistel network of 8 or more rounds 

from a random permutation, the Patarin attacks require 2(r-6)n 

plaintext/ciphertext pairs, and 2(r-4)n computations.  So, for the 

credit card case with 8 rounds, it would require 256 

plaintext/ciphertext pairs, and 2112 computational steps.  This 

means the attacker would need every single possible 

plaintext/ciphertext pair, and would need to perform more 

computations than would be needed to break an 80 bit key.  

Increasing the round count beyond 8 makes these attacks even 

more difficult. 

4.3.3  Feistel + Cycle Performance 
 

The Feistel + Cycle construction’s performance is dependent upon 

the number of rounds used and the specific PRF that is used in the 

round function.  For any plaintext that is smaller than the block 

size of the PRF, the performance is essentially i*r*cost(PRF), 

where r is the round count and i is the average number of times 

the cipher cycles to get an acceptable output.  For the truncated 

AES PRF, performance is very close to i*r*cost(AES) + cost(AES 

key setup).  For the summing AES PRF, performance is close to 

2*i*r*cost(AES) + 2*cost(AES key setup). 

Measurement of the Feistel+Cycle method was done on a 2.34 

Ghz Pentium IV with 1GB of memory running Windows XP 

Professional, using AES as the base for the internal PRF.  The 

cipher was measured for a range of round counts ranging from 8 

to 128, using both the truncation and additive PRF constructions. 

 

Rounds PRF Enc/Second 

128 Trunc 7000 

32 Trunc 10500 

8 Trunc 18000 

8 Add 8100 

 

The range of rounds was measured to examine the viability of 

running large numbers of rounds to defeat any possibility of the 

worst-case brute force attack working for small inputs.   

5.  Specific and Compound Methods 
 

It is possible to use these methods in combination to yield FPE 

techniques that will allow for granting access to only selected 

digits of a number (for example, limiting a customer service 

application to the last four digits of a Social Security Number, 

while granting another application full access.)  These methods 

can be used to fill the gap between where the Prefix method is not 

practical and where the Feistel + Cycle construction may not be 

considered fully secure. 

 



5.1   Compound for Social Security 

Numbers 
 

The Social Security Number case is interesting because this is a 

common type of PII, and it is small enough that it does not fall 

into the obvious bounds for the known three provable FPE 

methods.  This case is valuable enough that we supply a method 

that gives reasonable security bounds for the entire number, and 

also gives the valuable property of being able to either decrypt the 

entire number or just the last four digits, which are often used in 

customer service applications for confirmation purposes. 

The construction works in the following way.  We use as the basis 

for the construction two ciphers: 

 

Pre5(P, T, K) : A Prefix cipher encrypting all five digit 

decimal values using key K, and an arbitrary tweak value T 

FC9(P, K) : A Feistel-cycle cipher encrypting all nine digit 

decimal values using key K. 

H(P) : A hash function from four digit decimal values to an 

arbitrary bit string. 

Construct two keys, K1 and K2.  Divide the Social Security 

Number into the initial five digits L and the last four digits R.  

The encrypted number is then computed by: 

 

E = FC9(Pre5(L, H(R), K1), K2) 

 

Now an entity can be given access to just the last four digits by 

giving them just K2.  They can use K2 to undo the Feistel 

encryption only.  An entity with access to K1 and K2 can decrypt 

the entire number by first undoing the Feistel encryption with K2, 

then undoing the Prefix encryption with K1 and the decrypted last 

four digits. 

The initial encryption with the Prefix Cipher insures that a 

theoretical attacker that uses the smaller bounds of the Feistel 

cipher run on a small plaintext space will only recover (in the 

worst case) the last four digits of the number and encrypted 

versions of the first five digits. 

 

5.2   Methods for Credit Card Numbers 
 

Credit card numbers are an interesting case for FPE, as they carry 

a check digit at the end of the number that is calculated with the 

Luhn algorithm, which is a modified sum of the digits.  This digit 

does not need to be encrypted, since it can simply be recalculated 

when the remaining digits are decrypted.   

There are three methods to encrypt with this checksum: 

Method 1 – Transparent Encryption 

The goal here is to encrypt a credit card number so that an 

encrypted number is indistinguishable from a plaintext number.  It 

maintains a valid checksum.  This is useful because untrusted 

applications that require a valid checksum will continue to 

function unmodified.  The risk here is that applications, since they 

cannot distinguish, may accidentally use an encrypted number as a 

plaintext number. 

To do this, encrypt all the digits except the last using an FPE 

algorithm. After encryption, add a checksum digit with a valid 

checksum of the encrypted digits.  This has the advantage that, to 

any application that tests the checksum, encrypted CCNs look 

identical to valid CCNs.  To decrypt, FPE decrypt all the digits 

except for the last, then regenerate the checksum digits on the 

plaintext digits. 

Method 2 – Checksum marking 

In some situations, it is valuable to encrypt so that the format is 

preserved, but that there is some indication that a number is 

encrypted.  By inducing a systematic offset in the checksum, a 

program can reliably tell that a number is encrypted, even though 

the format remains the same. 

Encrypt the number but exclude the final digit, and replace the 

checksum digit with the checksum value plus 1.  This insures that 

the checksum digit is invalid, and gives a reliable method to 

distinguish an encrypted CCN from a plaintext CCN. 

Method 3 – Checksum encoding 

The constant checksum offset can also be used to encode a small 

amount of extra information in the checksum digit.  This can be 

used to select from a set of keys, adding diversity to an existing 

key management scheme. 

Generate nine keys, encrypt all the digits (but the final) with one 

of these keys, and replace the checksum digits with the checksum 

plus a key identifying value from 1 to 9.  This insures that the 

checksum is invalid, and gives a method to change keys and 

record what key is used to encrypt a specific value without adding 

any data to the database.  This gives an additional key selection 

value, but must be supplemented with other sources to identify the 

key, more than 9 keys will be used. 
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